Mapping a two-dimensional cellular automaton onto distributed memory machines

Thomas LEDUC

October 27-29, 1999

- subduction of oceanic crust beneath continent,
- CA as an alternative to differential equations in modelling physics,
- models : topology, dynamics and specificities,
- ⇐ simulations : development of new dedicated parallel softwares,
- \circledast results, screen-dumps and future research works.

An alternative to diff. equ. in modelling physics

dynamics of granular material (Bak, Tang and Wiesenfeld - 1980),
an infinite sequence of stacks (or sizes of stacks),
each stack holds a finite number of

grains, each stack holds a finite number of own nature/colour attributes),

transition rule:

let:
$$\mathbb{I}(n) = \begin{cases} 0 \text{ if } n < 2\\ 1 \text{ otherwise} \end{cases}$$

→the 2D case :

 \diamond dynamics of granular material (Bak, \diamond a two-dimensional regular lattice of cells/grains,

 \blacklozenge an infinite sequence of stacks (or \blacklozenge a sort of individual-based model: each grain is individualize (with their

♦a more complicated transition rule based on the extended Moore neighbourhood (depending on the previous states of 25 neighbouring cells),

$$C_j^{t+1} = C_j^t - \mathbb{I}(C_j^t - C_{j-1}^t) - \mathbb{I}(C_j^t - C_{j+1}^t) + \mathbb{I}(C_{j-1}^t - C_j^t) + \mathbb{I}(C_{j+1}^t - C_j^t) - \mathbb{I}(C_j^t - C_j^t) - \mathbb{I}(C_j^t - C_j^t) + \mathbb{I}(C_j^t - C_j^t) - \mathbb{I}(C$$

Vector of cells : C^t **V**

October 27-29, 1999

 4^{th} IFIP workshop on Cellular Automata

Models : topology, dynamics and specificities

►1D model :

them represents a vertical portion of the "universe" ▶a finite array of 1,000 cells. Each of

and 2 coefficients (ageing and step) a set of 6 integers (colour, nature, set of seven cross-section thicknesses the state of a cell is determined by \Rightarrow a finite set of states, the state of a cell is determined by a \bullet

♦2 neighbours,

sition. They represent 3 different 3 quite distinct scales of time, physical phenomena, themselves, on \blacklozenge an overlap of 3 functions of tran- neighbourhood).

à global value (signal):

 $Coeff_{Translation},$

►2D model :

♦a 2D regular lattice of 200,000 cells, ageing...) \Rightarrow a finite set of states.

♦24 neighbours (the extended Moore

boundaries cells marked by an invariant boundary state, ♦a mechanism of copy of inside

Simulations : development of new dedicated parallel soft

→strategy :

solve concurrently \blacktriangleright parallelization via domain decomposition \Rightarrow all the subproblems can be

•all the subproblems are coupled \Rightarrow domain decomposition with

overlapping grids on each subdomain :

➡simplified algorithm :

periods: \blacklozenge to improve performance : overlap communication and computation

- 1. non-blocking send of internal boundaries cells,
- 2. update of pure inner cells of the current subdomain,
- 3. blocking receive of outer boundaries cells,
- 4. update of internal boundaries cells.

 \clubsuit Specificities of the parallelism of the 2D simulation

a virtual Cartesian topology of process

- the default MPI_COMM_WORLD has been divided into two distinct

subgroups (divide up the processes \Rightarrow allow different groups of processes to perform independent work),

- the "workers" are mapped onto a regular logical 2D-Cartesian topology

(MPI_Cart_create()),

October 27-29, 1999

October 27-29, 1999

 4^{th} IFIP workshop on Cellular Automata

	32		25		20		16		10		8		S		4		2	proc	of	nb	JS
15,15	4 * 8	33,60	1*25	28,86	1 * 20	14,48	2 * 8	17,00	1 * 10	14,14	1 * 8	9,45	1 * 5	7,78	1 * 4	4,23	1 * 2				ibdom
10,28	8 * 4	10,87	თ * თ	17,33	2 * 10	8,87	4 * 4	9,81	2 * 5	8,14	2 * 4	3,88	5 * 1	4,61	2 * 2	2,74	2 * 1				ain
		10,87	25*1	10,52	4 * 5	6,83	8 * 2	5,73	5 * 2	5,36	4 * 2			3,50	4 * 1			ass			
				9,22	5 * 4			5,73	10*1	5,00	8 * 1							ocied ratio (n		numbe	
				7,54	10*2													umber of bou		er of processo	
				9,22	20*1													undaries cells		ors per raw *	
																		s over global		* number of]	
																		number of c		processors pe	
																		ells per subd		er column	
																		omain)			

Thomas.Leduc@lip6.fr

nb				number	r of processo	rs per raw * 1	number of pr	ocessors per	column			
of												
proc			asso	cied ratio (nu	mber of bou	ndaries cells o	over global n	umber of cell	s per subdom	lain)		
40	1*40	2 * 20	4*10	8 * C	<u>c</u> * 8	10*4	20*2	40*1				
	44,67	29,14	17,98	15,48	11,91	10,97	10,97	15,48				
50	1 * 50	2*25	5*10	10 * 5	25 * 2	50*1						
	50,20	33,86	18,30	12,59	12,59	18,30						
64	% * %											
	16,47											
80	2*40	4*20	8 * 10	10 * 8	20*4	40 * 2						
	44,89	29,70	19,25	17,11	14,27	17,11						
100	1 *	2*50	4*25	5 * 20	10 *	20*5	25 * 4	50 * 2	100*			
	100				10				1			
	66,80	50,40	34,38	29,97	19,87	15,82	15,82	19,87	29,97			
125	5*25	25*5	125*									
			1									
	34,64	17,36	34,64									
160	4*40	8 * 20	20*8	40*4								
	45,32	30,79	20,18	20,18								
200	1 *	2 *	4*50	5 * 40	8 * 25	10 *	* 50	25 * 8	40*5	50*4	100*	2
	200	100				20	10				2	
	80,08	66,93	50,79	45,53	35,40	31,32	22,84	21,63	21,63	22,84	31,32	4
250	5*50	10 *	25 *	50*5	125*	250*						
		25	10		2	Р						
	50,98	35,90	24,24	24,24	35,90	50,98						

 4^{th} IFIP workshop on Cellular Automata

October 27-29, 1999

23/24

4th IFIP workshop on Cellular Automata

October 27-29, 1999

Conclusion and future research works...

- concerning the models : we draw our inspiration from the 1D SPM to develop our own 1D model. In the 2D case, according to the same results, we then choose to generalize this method. principle, we first implement a 2D model of avalanches. Since the multiplication of the data stored in the structure offers better visual
- \blacktriangleright the results obtained show (for the 2D simulation at least) the very good decomposition onto parallel architecture using a suitable message-passing library in the field of regular domain parallelisability of the problem and show also what can be gained by
- ➡ future research works could concern the development of a specialized within the overlapping plate. parallel software and the study of the concentration of the deformations